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Abstract 

Machine learning models increasingly influence critical decisions across diverse domains, yet 

their complex architectures often operate as black boxes, obscuring the rationale behind 

predictions and limiting stakeholder trust. This research demonstrates a comprehensive, 

reproducible workflow for applying explainable artificial intelligence techniques to interpret 

Random Forest classifier decisions using publicly available data and standard computational 

resources. The study implements and compares two leading explanation methods, SHAP 

(SHapley Additive exPlanations) and LIME (Local Interpretable Model-agnostic 

Explanations), on the Titanic survival prediction task to evaluate their consistency and 

practical utility. The methodology encompasses automated data preprocessing, model training 

with regularization to prevent overfitting, and systematic generation of both global and local 

explanations through multiple visualization formats. Results reveal exceptional agreement 

between explanation methods, with Spearman rank correlation of 0.918 and Pearson 

correlation of 0.982 for feature importance values. Both techniques consistently identified 

passenger sex as the dominant predictive feature, contributing approximately 15.4% and 

12.5% of model decisions respectively, followed by passenger class and fare. The Random 

Forest model achieved 84.5% test set ROC-AUC with controlled overfitting (0.040 ROC-AUC 

gap between training and test sets) while maintaining interpretable complexity through 

architectural constraints. The implementation executes efficiently on CPU hardware within 

minutes, eliminating computational barriers to XAI adoption. This work establishes that 

current explainability techniques can provide reliable, consistent insights into ensemble model 

decisions while remaining accessible to researchers and practitioners with limited 

computational resources. 

 

Keywords: Explainable Artificial Intelligence, SHAP, LIME, Random Forest, Model 

Interpretability, Machine Learning Transparency 

 

1. Introduction 

The proliferation of machine learning systems in critical decision-making domains has created 

an urgent need for interpretable and explainable artificial intelligence. As algorithms 

increasingly determine loan approvals, medical diagnoses, criminal sentencing 

recommendations, and employment decisions, the ability to understand and validate model 

reasoning becomes essential for ensuring fairness, accountability, and regulatory compliance 

(Adadi & Berrada, 2018). The European Union's General Data Protection Regulation (GDPR) 

explicitly establishes the right to explanation for automated decision-making systems, while 

similar frameworks emerge globally, mandating that organizations provide meaningful 

information about the logic involved in algorithmic decisions (Wachter et al., 2017). 
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Despite significant advances in model performance, the trade-off between predictive accuracy 

and interpretability remains a fundamental challenge in machine learning deployment. 

Complex models such as deep neural networks and ensemble methods often achieve superior 

performance but function as "black boxes," offering little insight into their decision processes 

(Rudin, 2019a). This opacity creates barriers to adoption in regulated industries, limits 

debugging capabilities, and prevents stakeholders from identifying potential biases or errors in 

model reasoning (Lipton, 2018). The explainable AI field has emerged to address these 

challenges, developing methods that illuminate model behavior while preserving predictive 

performance. 

Recent years have witnessed the development of numerous explainability techniques, broadly 

categorized into model-agnostic and model-specific approaches. Among model-agnostic 

methods, SHAP (SHapley Additive exPlanations) (Lundberg & Lee, 2017) and LIME (Local 

Interpretable Model-agnostic Explanations) (Ribeiro et al., 2016) have gained widespread 

adoption due to their theoretical foundations and practical applicability across diverse model 

types. SHAP leverages cooperative game theory to assign each feature an importance value 

based on Shapley values, ensuring consistency and local accuracy (Lundberg & Lee, 2017). 

LIME approximates model behavior locally through interpretable surrogates, optimizing for 

fidelity in the neighborhood of specific instances (Ribeiro et al., 2016). While both methods 

have demonstrated effectiveness in various applications, systematic comparisons of their 

relative strengths, computational requirements, and practical trade-offs remain limited. 

Existing research typically evaluates explainability methods in isolation or focuses on specific 

application domains without providing reproducible workflows that practitioners can adapt. 

Studies often employ complex models and large-scale datasets that require substantial 

computational resources, creating barriers for researchers and organizations with limited 

infrastructure (Ustun et al., 2019). Furthermore, the emphasis on achieving state-of-the-art 

predictive performance often overshadows the primary goal of explainability research: 

understanding and communicating model decision processes effectively. This focus on 

performance metrics rather than explanation quality has led to a gap between theoretical 

advances in XAI and practical implementation guidance. 

This research addresses these limitations by presenting a comprehensive comparative analysis 

of SHAP and LIME implemented through a fully reproducible, CPU-friendly workflow. The 

study deliberately employs a moderate-complexity Random Forest model trained on the well-

understood Titanic dataset, prioritizing explainability demonstration over predictive 

performance maximization. This approach enables clear illustration of explainability concepts 

while ensuring computational accessibility and result reproducibility. The research aims to 

provide empirical evidence comparing SHAP and LIME across multiple dimensions including 

consistency, computational efficiency, and explanation fidelity, while establishing a practical 

framework that researchers and practitioners can adapt for their own classification tasks. 

The core contributions of this work include: (1) a complete automated pipeline from data 

acquisition through explanation visualization, eliminating manual intervention and ensuring 

reproducibility; (2) systematic empirical comparison of SHAP and LIME performance across 

stability, computational, and fidelity metrics using identical model predictions; (3) 

demonstration that meaningful explainability analysis is achievable using standard 

computational resources without specialized hardware; and (4) practical guidance for selecting 

and implementing explainability methods based on specific use case requirements. By focusing 

on methodology and demonstration rather than performance optimization, this research 

provides a foundation for broader adoption of explainable AI techniques across diverse 

domains and computational environments. 
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2. Literature Review 

2.1 Foundational Explainability Methods 

The development of model-agnostic explainability methods has fundamentally transformed the 

interpretability landscape in machine learning. Ribeiro et al. (2016) introduced LIME (Local 

Interpretable Model-agnostic Explanations), establishing the paradigm of local linear 

approximation for explaining individual predictions. LIME generates explanations by 

perturbing input instances, obtaining model predictions for these perturbations, and fitting a 

weighted linear model to approximate local behavior. The method's model-agnostic nature 

enables application across diverse architectures, from linear models to deep neural networks. 

However, LIME's reliance on random sampling introduces variability in explanations, and the 

choice of perturbation strategy significantly influences explanation fidelity (Kumar et al., 

2020). 

Lundberg and Lee (2017) proposed SHAP (SHapley Additive exPlanations), unifying several 

existing explanation methods under a game-theoretic framework. SHAP assigns each feature 

an importance value derived from Shapley values in cooperative game theory, ensuring that 

explanations satisfy desirable properties including local accuracy, missingness, and 

consistency. The TreeExplainer algorithm (Lundberg et al., 2020) extends SHAP specifically 

for tree-based models, enabling polynomial-time exact Shapley value computation rather than 

approximation through sampling. While SHAP provides stronger theoretical guarantees than 

LIME, its computational complexity for model-agnostic implementations can be prohibitive 

for high-dimensional data (Covert et al., 2020). 

Subsequent research has refined these foundational approaches to address specific limitations. 

Slack et al. (2020) demonstrated that LIME and SHAP can be manipulated by adversarially 

designed models that hide biases from explanation methods while maintaining discriminatory 

behavior. This vulnerability highlights the importance of robust explanation techniques that 

consider potential adversarial scenarios. Aas et al. (2021) examined the sensitivity of SHAP 

values to the choice of background dataset and proposed methods for selecting appropriate 

reference distributions, showing that explanation values can vary substantially based on this 

choice. 

 

2.2 Comparative Studies of Explainability Methods 

Several studies have undertaken comparative analyses of explainability methods, though 

comprehensive empirical evaluations remain limited. Guidotti et al. (2018) provided a survey 

of methods for explaining black-box models, categorizing approaches by explanation type and 

scope but without systematic performance comparison. Their taxonomy distinguishes between 

local and global explanations, model-specific and model-agnostic methods, and different 

explanation formats including feature importance, rules, and prototypes. 

Mothilal et al. (2020) introduced DiCE (Diverse Counterfactual Explanations) and compared 

it with LIME and SHAP for generating actionable explanations. Their evaluation focused on 

the diversity and feasibility of generated explanations rather than computational efficiency or 

stability. The study revealed that while SHAP and LIME excel at feature attribution, they 

provide limited guidance for actionable recourse, motivating the development of counterfactual 

explanation methods. 

Kumar et al. (2021) conducted an empirical evaluation of LIME, SHAP, and other 

explainability methods across multiple datasets and model types. Their findings indicated that 

no single method consistently outperforms others across all evaluation metrics, suggesting that 

method selection should consider specific application requirements. However, their study 

focused primarily on fidelity metrics without addressing computational constraints or 

providing reproducible implementation guidelines. The evaluation also revealed significant 

variability in explanation quality across different data characteristics and model complexities. 
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2.3 Domain-Specific Applications 

The application of explainability methods to specific domains has revealed both opportunities 

and challenges for practical deployment. In healthcare, Lauritsen et al. (2020) applied SHAP 

to explain early warning systems for patient deterioration, demonstrating that clinicians could 

identify important features and potential model errors through SHAP visualizations. Their 

work highlighted the importance of domain expertise in interpreting explanations and the need 

for explanation methods that align with clinical reasoning patterns. 

Financial applications have driven substantial interest in explainable AI due to regulatory 

requirements and risk management needs. Bracke et al. (2019) examined machine learning 

explainability in the context of financial services, comparing multiple methods including LIME 

and SHAP for credit risk models. Their analysis revealed that while both methods provide 

valuable insights, the choice between them often depends on whether global model behavior 

or instance-specific decisions require explanation. The study also emphasized the importance 

of computational efficiency for real-time financial applications. 

In criminal justice applications, Rudin (2019b) argued against the use of black-box models 

entirely, advocating for inherently interpretable models rather than post-hoc explanations. This 

perspective challenges the fundamental premise of model-agnostic explainability methods, 

suggesting that the additional complexity introduced by explanation layers may reduce rather 

than enhance trustworthiness. However, subsequent work by Bhatt et al. (2020) demonstrated 

through user studies that even imperfect explanations from methods like SHAP and LIME can 

improve appropriate trust calibration compared to no explanations. 

 

2.4 Computational and Implementation Considerations 

The practical deployment of explainability methods requires careful consideration of 

computational constraints and implementation challenges. Molnar (2022) provided 

comprehensive implementation guidance for various interpretability methods, including 

detailed code examples and computational complexity analysis. However, the examples 

typically assume substantial computational resources and do not address deployment in 

resource-constrained environments. 

Recent work has focused on improving the computational efficiency of explainability methods. 

Sundararajan et al. (2017) proposed Integrated Gradients as a computationally efficient 

alternative to SHAP for neural networks, though the method is model-specific and does not 

generalize to tree-based models. Chen et al. (2019) developed L-Shapley and C-Shapley to 

reduce the computational complexity of Shapley value calculation through sampling strategies, 

trading off exact computation for improved scalability. 

The reproducibility crisis in machine learning research extends to explainability studies. Lipton 

(2018) highlighted the lack of reproducible baselines and standardized evaluation protocols in 

interpretability research, arguing that many claimed advances cannot be independently 

verified. This challenge is compounded by the absence of standard benchmark datasets and 

evaluation metrics for explainability, unlike the well-established benchmarks for predictive 

performance. 

 

2.5 Research Gap 

Despite extensive development of explainability methods and numerous application studies, 

several critical gaps persist in the literature. First, existing comparative studies typically focus 

on theoretical properties or single evaluation dimensions without providing comprehensive 

empirical comparison across stability, efficiency, and fidelity metrics. Second, the emphasis 

on complex models and large datasets creates barriers for researchers and practitioners with 

limited computational resources, preventing broader adoption of explainability techniques. 
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Third, the lack of complete, reproducible workflows from data processing through explanation 

generation hinders practical implementation and independent validation of results. 

This research addresses these gaps by providing a systematic comparison of SHAP and LIME 

using a fully reproducible, computationally accessible framework. Unlike previous studies that 

prioritize predictive performance or theoretical analysis, this work focuses on practical 

implementation guidance and empirical comparison using standard computational resources. 

The complete automation from data acquisition through visualization, combined with the use 

of a well-understood dataset and moderate-complexity model, enables researchers to replicate, 

validate, and extend the findings. By demonstrating that meaningful explainability analysis is 

achievable without specialized hardware or complex architectures, this research lowers barriers 

to XAI adoption and provides a template for systematic explainability evaluation across diverse 

domains. 

 

3. Methodology 

This section presents the comprehensive methodology for comparing SHAP (SHapley Additive 

exPlanations) and LIME (Local Interpretable Model-agnostic Explanations) techniques in the 

context of binary classification. The experimental framework employs the Titanic survival 

dataset as a benchmark for evaluating explainability methods, utilizing a Random Forest 

classifier as the base model for generating predictions that require interpretation. 

 

3.1 Problem Formulation 

The primary objective involves developing a systematic framework for comparing global and 

local explainability techniques in machine learning models.  

Given a dataset D = {(xᵢ, yᵢ)}ⁿᵢ₌₁ where xᵢ ∈ ℝᵈ represents feature vectors and yᵢ ∈ {0, 1} denotes 

binary survival outcomes, the task requires training a classifier f: ℝᵈ → [0, 1] that map 

passenger characteristics to survival probabilities. 

Subsequently, the framework applies SHAP and LIME to generate explanations E_SHAP and 

E_LIME for model predictions, enabling quantitative and qualitative comparison of their 

explanatory capabilities. 

The research addresses three specific challenges: (1) establishing a robust baseline model with 

controlled overfitting for reliable explanations, (2) implementing both global and local 

explainability methods on identical predictions for direct comparison, and (3) quantifying 

agreement and disagreement patterns between different explainability approaches. 

 

3.2 Dataset and Characteristics 

The Titanic passenger survival dataset serves as the experimental foundation, containing 891 

samples with 15 initial features describing passenger demographics, ticket information, and 

cabin details. This dataset provides an ideal testbed for explainability research due to its 

interpretable features, documented historical context, and balanced complexity that challenges 

models without requiring deep architectures. 
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Figure 1: Comprehensive analysis of the Titanic dataset showing (a) survival distribution with 

38.4% survival rate, (b) gender-based survival disparities, (c) passenger class distribution and 

survival rates, (d) age distribution with median of 28 years, (e) fare distribution showing right 

skew, (f) family size frequencies, (g) missing value patterns with cabin having 77.1% 

missingness, and (h) feature correlation matrix revealing moderate correlations between fare 

and class. 

 

The dataset exhibits several characteristics relevant to explainability analysis (see Figure 1). 

The target variable shows class imbalance with 549 deaths (61.6%) and 342 survivors (38.4%), 

necessitating stratified sampling during model development. Missing values appear 

predominantly in three features: age (19.9%), cabin (77.1%), and embarked port (0.2%). The 

correlation analysis reveals expected relationships, such as negative correlation between 

passenger class and fare (-0.55), while maintaining sufficient feature independence to enable 

meaningful individual attributions. 

 

3.3 Data Preprocessing Pipeline 

The preprocessing pipeline transforms raw passenger records into standardized numerical 

features suitable for machine learning algorithms while preserving interpretability for 

explainability analysis. 
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Figure 2: Complete data preprocessing pipeline showing transformation from raw data 

(891×15) through imputation, feature engineering, encoding, splitting, and scaling to produce 

model-ready training (712×11) and test (179×11) sets. 

 

3.3.1 Missing Value Imputation 

Missing values undergo systematic imputation based on feature characteristics and 

relationships (illustrated in Figure 2). For the age feature, group-wise median imputation 

stratified by passenger class and gender preserves demographic patterns: 

 

age(imputed) = median(age | pclass, sex)   (1) 

 

This approach maintains realistic age distributions within passenger subgroups, as first-class 

passengers typically included older individuals while third-class contained more families with 

children. The embarked feature receives mode imputation (S = Southampton), representing the 

most common embarkation port. Fare values missing for 15 passengers undergo class-based 

median imputation, reflecting the strong correlation between ticket price and passenger class. 
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3.3.2 Feature Engineering 

 

 

 
Figure 3: Feature engineering diagram showing transformation of 7 original features into 11 

final features through encoding, derivation, and one-hot encoding operations. 

 

Feature engineering creates two derived variables that capture family dynamics aboard the ship 

(see Figure 3): 

 

family_size = sibsp + parch + 1     (2) 

is_alone = {1 if family_size = 1; 0 otherwise} 

 

These engineered features provide the model with explicit family context, as historical accounts 

indicate families often survived or perished together. The deck feature, extracted from cabin 

numbers where available, undergoes removal due to 77.1% missingness that would introduce 

noise rather than signal. 

 

3.3.3 Categorical Encoding 

Categorical variables undergo appropriate encoding schemes based on their properties. The 

binary sex feature receives label encoding (male=0, female=1), while the nominal embarked 

feature undergoes one-hot encoding, creating three binary indicators (embarked_C, 

embarked_Q, embarked_S). This encoding strategy preserves the categorical nature of 

embarkation ports while avoiding arbitrary ordinal assumptions. 

 

3.3.4 Feature Scaling 

Following the 80-20 stratified train-test split preserving survival proportions, features undergo 

standardization using the StandardScaler: 
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x_scaled = (x - μ_train) / σ_train    (3) 

 

where μ_train and σ_train represent training set statistics. 

Test set scaling applies training parameters to prevent data leakage, ensuring realistic 

performance estimates. The final preprocessed dataset contains 712 training samples and 179 

test samples, each with 11 features. 

 

3.4 Model Architecture and Training 

 

 
 

Figure 4: Random Forest classifier architecture showing ensemble of 100 decision trees with 

maximum depth of 4, utilizing majority voting for final predictions. 

 

3.4.1 Random Forest Configuration 

The Random Forest classifier serves as the predictive model, selected for its balance between 

performance and interpretability (illustrated in Figure 4). The architecture comprises 100 

decision trees, each trained on bootstrap samples with feature randomization. Hyperparameter 

selection follows systematic validation: 

• n_estimators = 100: Validation curves demonstrate performance plateau beyond 75 

trees, with 100 providing stability without computational excess 

• max_depth = 4: Optimal depth balancing model capacity with generalization, 

preventing overfitting while capturing essential patterns 

• min_samples_split = 20: Requires sufficient samples for node splitting, promoting 

generalization 

• min_samples_leaf = 15: Ensures leaf nodes represent meaningful subpopulations 

• max_features = 'sqrt': Samples √11 ≈ 3 features per split, introducing beneficial 

randomness 

 

3.4.2 Training Procedure 

The model training employs the Gini impurity criterion for split quality assessment: 
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Gini = 1 - (p₁² + p₂²)     (4) 

 

where pᵢ represents the proportion of samples belonging to class i at a given node. 

The ensemble aggregates individual tree predictions through majority voting for classification 

and probability averaging for confidence scores: 

 

P(y=1|x) = (1/100) × sum[P_t(y=1|x)] from t=1 to 100  (5) 

 

 
Figure 5: Hyperparameter validation curves showing (a) optimal max_depth at 4 with minimal 

train-validation gap and (b) performance stabilization after 75 estimators. 

 

Hyperparameter optimization employs 5-fold cross-validation on the training set, evaluating 

ROC-AUC scores across parameter ranges (see Figure 5). The validation curves reveal that 

max_depth=4 achieves optimal performance (87.3% validation ROC-AUC) while maintaining 

a train-validation gap below 0.05, indicating effective regularization. 
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3.5 Explainability Implementation 

 

 
 

Figure 6: Complete experimental workflow integrating data processing, model training, SHAP 

analysis, LIME analysis, and comparative evaluation. 

 

3.5.1 SHAP Implementation 

SHAP values quantify feature contributions through cooperative game theory, specifically 

Shapley values from coalitional games.  

For a prediction f(x), SHAP assigns each feature i an importance value phi_i satisfying: 

 

f(x) = phi_0 + sum(phi_i(x)) for i = 1 to d   (6) 

 

where phi_0 = E[f(X)] represents the base value. 

 

The TreeExplainer algorithm leverages the tree structure for exact Shapley value computation 

in polynomial time, avoiding the exponential complexity of model-agnostic approaches. 

Implementation utilizes the shap library (version 0.42.1) with the following configuration: 

 

explainer = shap. TreeExplainer(rf_model) 

shap_values = explainer(X_test) 

 

The analysis generates both global explanations (mean absolute SHAP values across all 

samples) and local explanations (individual prediction breakdowns) for comprehensive model 

interpretation. 
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3.5.2 LIME Implementation 

LIME approximates model behavior locally through interpretable surrogates. For an instance 

x LIME generates neighborhood samples, obtains model predictions, and fits a weighted linear 

model: 

 

xi(x) = argmin_g∈G [L(f, g, pi_x) + Omega(g)]  (7) 

 

where G represents the class of interpretable models (linear models), L measures fidelity 

between f and g in the locality defined by pi_x, and Omega(g) controls model complexity. 

 

The implementation employs: 

explainer = lime.lime_tabular.LimeTabularExplainer( 

    training_data=X_train, 

    feature_names=feature_names, 

    class_names=['Not Survived', 'Survived'], 

    discretize_continuous=True 

) 

 

Each explanation uses 5,000 perturbed samples with exponential kernel weighting based on L2 

distance, selecting the top 10 features for interpretability. 

 

3.6 Evaluation Strategy 

3.6.1 Model Performance Metrics 

Model evaluation employs multiple metrics to ensure robust performance assessment: 

• Accuracy: Overall classification correctness 

• ROC-AUC: Discrimination capability across probability thresholds 

• Precision/Recall: Class-specific performance indicators 

• Overfitting Gap: Difference between training and test metrics, maintaining below 0.05 

threshold 

 

3.6.2 Explainability Comparison Metrics 

The framework evaluates explainability methods through: 

1. Feature Importance Agreement: Spearman correlation between SHAP and LIME 

feature rankings 

2. Stability Analysis: Variance in explanations for similar instances 

3. Computational Efficiency: Time complexity for generating explanations 

4. Interpretability Assessment: Qualitative evaluation of explanation clarity 

 

3.6.3 Statistical Validation 

All experiments employ fixed random seeds (random_state=42) ensuring reproducibility. 

Performance metrics include 95% confidence intervals computed through bootstrapping with 

1,000 iterations. The stratified train-test split preserves class distributions, preventing 

optimistic bias in minority class performance. 
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Table 1: Complete experimental configuration including data dimensions, model 

hyperparameters, and evaluation settings. 

 

Component   Configuration 

Dataset Size   891 samples (712 train, 179 test) 

Features   11 (after preprocessing) 

Model   Random Forest (100 trees, depth=4) 

SHAP   TreeExplainer with exact computation 

LIME   5,000 samples, top 10 features 

Validation   5-fold cross-validation 

Metrics   ROC-AUC (primary), Accuracy, Precision, 

Recall 

 

This methodology establishes a rigorous framework for comparing explainability techniques 

while maintaining reproducibility and scientific validity. The combination of systematic 

preprocessing, controlled model complexity, and comprehensive evaluation enables 

meaningful insights into the relative strengths and limitations of SHAP and LIME for 

interpreting machine learning predictions. 

 

4.0 Results and Discussion 

This section presents the experimental findings from applying explainable artificial intelligence 

techniques to the Titanic survival prediction model. The results demonstrate the effectiveness 

of SHAP and LIME in providing interpretable insights into Random Forest model decisions, 

establishing a reproducible, CPU-friendly XAI workflow suitable for educational and research 

purposes. 

 

4.1 Results 

4.1.1 Model Performance Evaluation 

The Random Forest classifier achieved satisfactory performance on the Titanic dataset while 

maintaining computational efficiency on CPU hardware. Table 2 presents the overfitting 

analysis across multiple metrics, demonstrating the model's generalization capability. 

 

Table 2: Overfitting Analysis of Random Forest Model Performance 

Metric   Training   Test   Gap   Overfit_Flag  

Accuracy   0.8062   0.7709   0.0352   FALSE  

ROC-AUC   0.8852   0.8449   0.0403   FALSE  

Precision   0.7304   0.6842   0.0462   FALSE  

Recall   0.7839   0.7536   0.0303   FALSE 

 

The model achieved a training accuracy of 0.8062 and test accuracy of 0.7709, with a gap of 

0.0352. The ROC-AUC scores showed strong performance with training ROC-AUC of 0.8852 

and test ROC-AUC of 0.8449, resulting in a gap of 0.0403. All metrics remained below the 

0.05 threshold for overfitting concerns, validating the effectiveness of the regularization 

parameters employed. 

 

Table 3 provides the detailed classification report for the test set predictions, showing 

performance across both survival classes. 
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Table 3: Classification Report for Test Set Predictions 

Class   Precision   Recall   F1-Score   Support  

Not Survived (0)   0.8350   0.7818   0.8075   110  

Survived (1)   0.6842   0.7536   0.7172   69  

Accuracy   -   -   0.7709   179  

Macro Average   0.7596   0.7677   0.7624   179  

Weighted 

Average  

 0.7768   0.7709   0.7727   179 

 

The model demonstrated reasonable classification performance with precision of 0.8350 for 

the "Not Survived" class and 0.6842 for the "Survived" class. The overall accuracy of 0.7709 

represents acceptable performance for demonstrating explainability techniques rather than 

optimizing for benchmark leaderboards. 

 

Figure 7 illustrates the ROC curves for both training and test sets, providing visual confirmation 

of the model's discriminative ability and controlled overfitting. 

 

 

 
Figure 7: ROC Curves Comparison Between Training and Test Sets 

 

The ROC curves reveal alignment between training (AUC = 0.885) and test (AUC = 0.845) 

performance, with both curves substantially outperforming the random classifier baseline. The 
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small separation between curves confirms successful regularization while maintaining 

interpretable model complexity. 

 

4.1.2 Learning and Validation Analysis 

Figure 8 presents the learning curves for both ROC-AUC and accuracy metrics, demonstrating 

model convergence patterns. 

 

 
Figure 8: Learning Curves Showing Model Performance with Increasing Training Set Size 

 

The learning curves show steady improvement in both training and cross-validation scores as 

the training set size increases. The convergence of training and validation curves at 

approximately 400 samples indicates sufficient data for model training. The consistent gap 

between curves across different training sizes reflects the model's stable generalization 

behavior. 

 

The confusion matrix in Figure 9 provides detailed insight into the model's prediction patterns. 
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Figure 9: Confusion Matrix for Test Set Predictions 

 

The confusion matrix reveals 86 true negatives and 52 true positives, with 24 false positives 

and 17 false negatives. The distribution of errors across both classes indicates balanced 

prediction behavior without severe bias toward either class. 

 

4.1.3 SHAP Analysis Results 

Figure 10 presents the SHAP summary plot, revealing global feature importance and impact 

patterns across all test samples. 
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Figure 10: SHAP Summary Plot Showing Feature Impact on Model Predictions 

 

The SHAP analysis identifies sex as the most influential feature, with clear separation between 

male (blue dots, negative SHAP values) and female (red dots, positive SHAP values) 

passengers. Passenger class demonstrates the second highest impact, followed by fare with 

bidirectional effects depending on feature interactions. The visualization effectively 

communicates how feature values influence predictions across the entire dataset. 

Figure 11 displays the mean absolute SHAP values, quantifying the average impact magnitude 

of each feature. 
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Figure 11: Mean Absolute SHAP Values for Feature Importance Ranking 

 

The quantitative SHAP importance values confirm sex as the dominant feature with a mean 

absolute value of approximately 0.154, followed by passenger class (0.065) and fare (0.047). 

This ranking provides a global perspective on feature contributions to model decisions. 

Figure 12 demonstrates a SHAP waterfall plot for a specific prediction, showing local feature 

contributions. 
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Figure 12: SHAP Decision Plot Showing Feature Contributions Across 30 Test Samples 

 

The SHAP decision plot (Figure 12) traces the prediction paths for 30 test samples from the 

baseline value of 0.4 through each feature's contribution. The sex feature creates the primary 

split in predictions, separating the paths into two distinct clusters with final values concentrated 

around 0.1-0.3 and 0.6-0.8. Passenger class and fare provide secondary and tertiary adjustments 

to the predictions, while the remaining eight features (embarked_S through sibsp) contribute 

minimal deviations, as evidenced by the nearly parallel paths through these feature levels. The 

visualization confirms the model's reliance on the top three features for determining survival 

predictions, with sex alone accounting for approximately 0.5 units of prediction spread. 

 

4.1.4 LIME Analysis Results 

Figures 13 and 14 present LIME explanations for correctly classified and misclassified 

predictions respectively. 
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Figure 13: LIME Explanation for High Confidence Survival Prediction (Sample 19) 

 

For the high-confidence survival prediction (70.66% probability), LIME identifies sex (0.00 < 

sex <= 1.00) as the primary positive contributor with the largest green bar, indicating female 

passengers. The passenger class (pclass <= 2.00) provides additional positive influence. The 

interpretable feature ranges make the explanation accessible to non-technical stakeholders. 

 

 
 

Figure 14: LIME Explanation for Misclassified Passenger (Sample 2) 
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The misclassified case reveals strong negative predictors including male sex (sex <= 0.00), 

third class (2.00 < pclass <= 3.00), and low fare (fare <= 7.90). Despite embarking at Cherbourg 

providing positive influence, the model predicted non-survival with 72.88% confidence for a 

passenger who actually survived, illustrating the limitations of demographic-based predictions. 

 

4.1.5 Comparative Analysis Between SHAP and LIME 

Table 4 presents the quantitative comparison between SHAP and LIME feature importance 

values, demonstrating strong methodological agreement. 

 

Table 4: Comparison of Feature Importance Values Between SHAP and LIME Methods 

sex   0.1538   0.1247   1   1  

pclass   0.0648   0.0574   2   3  

fare   0.0475   0.0594   3   2  

embarked_S   0.0184   0.0116   4   5  

age   0.0176   0.0164   5   4  

family_size   0.0159   0.0035   6   9  

is_alone   0.0112   0.0085   7   6  

embarked_C   0.0081   0.0077   8   8  

parch   0.0060   0.0085   9   7  

sibsp   0.0055   0.0024   10   10  

embarked_Q   0.0029   0.0016   11   11 

 

The comparison reveals remarkable agreement between methods, with both identifying sex as 

the most important feature. The Spearman rank correlation coefficient of 0.918 indicates nearly 

perfect agreement in feature ranking, while the Pearson correlation coefficient of 0.982 

demonstrates exceptional consistency in relative importance magnitudes. Minor ranking 

differences, such as the swap between fare and pclass for positions 2 and 3, reflect 

methodological differences rather than fundamental disagreements. 

Figures 15 and 16 provide side-by-side visual comparisons of SHAP and LIME explanations 

for individual predictions. 

 

 
 

Figure 15: SHAP vs LIME Comparative Analysis for Correct Death Prediction (Sample 0) 
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Figure 16: SHAP vs LIME Comparative Analysis for Correct Survival Prediction (Sample 4) 

 

 

Both comparative visualizations demonstrate consistent feature identification between 

methods, with sex and pclass appearing as top contributors in both SHAP and LIME 

explanations. The magnitude differences reflect the distinct mathematical frameworks: SHAP's 

game-theoretic approach versus LIME's local linear approximation. 

 

4.2 Discussion 

4.2.1 Establishing a Reproducible XAI Workflow 

This research successfully demonstrates a CPU-friendly, reproducible workflow for applying 

explainable AI techniques to machine learning models. The implementation requires only 

standard Python libraries and executes efficiently on consumer hardware without GPU 

acceleration, making the methodology accessible to researchers and practitioners with limited 

computational resources. The entire pipeline, from data preprocessing through model training 

to generating explanations, completes within minutes on standard laptop processors, 

establishing its viability for educational and research purposes. 

The deliberate choice of moderate model performance (77.09% accuracy) rather than pursuing 

state-of-the-art results emphasizes the primary objective: showcasing explainability methods 

rather than optimizing predictive metrics. This approach aligns with the growing recognition 

in machine learning research that interpretability often provides more value than marginal 

performance improvements, particularly in domains requiring transparent decision-making. 

 

4.2.2 Methodological Validation Through Agreement 

The exceptional correlation between SHAP and LIME methods (Spearman: 0.918, Pearson: 

0.982) provides strong validation for both techniques' reliability in explaining Random Forest 

decisions. This agreement is particularly significant given the fundamental differences in their 

theoretical foundations. SHAP employs cooperative game theory to compute exact Shapley 

values ensuring global consistency, while LIME constructs local linear approximations 

optimized for individual prediction fidelity. 
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The high Pearson correlation (0.982) indicates that not only do the methods agree on feature 

rankings, but they also assign remarkably similar importance magnitudes. This quantitative 

agreement strengthens confidence in the explanations provided, suggesting that for well-

structured tabular data with clear feature relationships, different XAI approaches converge 

toward consistent interpretations. The minor differences observed, such as the relative 

positioning of fare and pclass, reflect each method's unique perspective rather than 

contradictory findings. 

 

4.2.3 Feature Importance Insights and Historical Validation 

The dominance of sex as the primary predictive feature across both SHAP (0.1538) and LIME 

(0.1247) aligns with historical accounts of the Titanic disaster. The "women and children first" 

evacuation protocol created a strong statistical pattern that the model successfully identified 

without explicit programming of this rule. This alignment between data-driven discovery and 

historical knowledge validates both the dataset's integrity and the model's learning capability. 

Passenger class emerged consistently as the second or third most influential feature, reflecting 

socioeconomic disparities in survival rates. The interaction between class and fare, visible in 

the SHAP summary plot where fare shows bidirectional effects, reveals the model's capacity 

to capture complex relationships. Lower fare values within the same class might indicate less 

favorable cabin locations, while extremely high fares could correspond to luxury suites with 

better evacuation access. 

The relatively lower importance of family-related features (family_size: SHAP 0.0159, LIME 

0.0035) presents an interesting finding. Despite the potential for families to assist each other 

during evacuation, individual characteristics proved more determinative of survival outcomes. 

This pattern suggests that systematic factors like gender and class overwhelmed group 

dynamics in the crisis situation. 

 

4.2.4 Practical Implications for XAI Deployment 

The successful application of both SHAP and LIME demonstrates the maturity of current XAI 

techniques for tree-based ensemble methods. The TreeExplainer implementation for SHAP 

provided polynomial-time exact Shapley value computation, avoiding the computational 

burden of model-agnostic approaches. Meanwhile, LIME's flexibility proved valuable for 

generating intuitive local explanations despite its sampling-based approximation methodology. 

The visual outputs generated serve different stakeholder needs effectively. SHAP's summary 

plot provides data scientists with comprehensive global insights into feature relationships 

across the entire dataset. The waterfall visualizations offer intuitive understanding of individual 

predictions, clearly showing how each feature contributes to moving the prediction from the 

baseline. LIME's bar chart format with interpretable feature ranges makes explanations 

accessible to domain experts without machine learning expertise. 

 

4.2.5 Educational Value and Research Contributions 

This work contributes to the XAI literature by providing a complete, reproducible workflow 

that researchers can adapt for their own applications. The code implementation, available with 

comprehensive documentation, serves as an educational resource for understanding both the 

theoretical foundations and practical applications of explainability methods. The side-by-side 

comparison of SHAP and LIME on identical predictions offers unique insights into how 

different explanation paradigms interpret the same model behavior. 

The identification and analysis of misclassified cases through XAI techniques reveals patterns 

that pure performance metrics cannot capture. Understanding why the model incorrectly 

predicted death for certain surviving passengers highlights the inherent limitations of 

demographic-based predictions and the importance of factors not captured in the available 
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features. These insights inform both model improvement strategies and appropriate confidence 

calibration for real-world deployment. 

The minimal overfitting observed (ROC-AUC gap of 0.0403) while maintaining model 

interpretability demonstrates that complexity and explainability need not be mutually 

exclusive. The constrained Random Forest architecture with maximum depth of 4 produced 

explanations that remain cognitively manageable while achieving reasonable predictive 

performance. This balance represents a practical sweet spot for many applications where 

understanding model decisions outweighs marginal accuracy gains. 

 

5.0 Conclusion and Recommendations 

5.1 Conclusion 

This research addressed the critical need for interpretable machine learning by demonstrating 

a comprehensive, reproducible workflow for applying explainable artificial intelligence 

techniques to black-box models. The study successfully achieved its primary objective of 

showcasing how SHAP and LIME methods can effectively illuminate the decision-making 

processes of Random Forest classifiers using publicly available data without requiring 

specialized computational resources. 

The implementation of a CPU-friendly XAI pipeline on the Titanic dataset yielded several 

significant findings. Both SHAP and LIME consistently identified sex as the dominant 

predictive feature, followed by passenger class and fare, with remarkable agreement between 

methods as evidenced by correlation coefficients exceeding 0.91 for ranking and 0.98 for 

magnitude. This convergence between fundamentally different explanation paradigms 

validates the reliability of both techniques and demonstrates that well-structured tabular data 

yields consistent interpretations across diverse XAI approaches. 

The research makes three primary contributions to the explainability literature. First, it 

establishes a fully automated, reproducible workflow that executes efficiently on consumer 

hardware, removing computational barriers to XAI adoption. Second, it provides empirical 

evidence of strong agreement between game-theoretic and approximation-based explanation 

methods, strengthening confidence in their practical application. Third, it demonstrates that 

meaningful model interpretability can be achieved without sacrificing reasonable predictive 

performance, challenging the perceived trade-off between accuracy and explainability. 

The visual and quantitative explanations generated serve distinct stakeholder needs, from 

technical audiences requiring detailed feature interaction analysis to domain experts seeking 

intuitive understanding of individual predictions. The successful identification of misclassified 

cases through XAI analysis revealed patterns that traditional performance metrics cannot 

capture, highlighting the value of interpretability beyond accuracy optimization. This work 

establishes that in machine learning explainability research, the quality of explanation and 

accessibility of methods constitute metrics as important as predictive performance. 

The study validates that current XAI techniques have reached sufficient maturity for practical 

deployment in tree-based ensemble methods. The polynomial-time exact computation of 

Shapley values through TreeExplainer and the effective local approximations from LIME 

demonstrate that interpretability tools can scale to real-world applications while maintaining 

theoretical rigor. By prioritizing methodological demonstration over benchmark optimization, 

this research provides a foundational resource for researchers and practitioners seeking to 

implement explainable AI in their domains. 

 

5.2 Recommendations 

5.2.1 Practical Implementation 

Organizations deploying machine learning models should integrate XAI techniques as standard 

components of their model development pipelines rather than optional additions. The 

http://www.iiardjournals.org/


International Journal of Computer Science and Mathematical Theory (IJCSMT) E-ISSN 2545-5699  
P-ISSN 2695-1924 Vol 11. No. 8 2025 www.iiardjournals.org online version 

 

 

 IIARD – International Institute of Academic Research and Development 
 

Page 46 

demonstrated workflow requires minimal computational resources and executes within 

minutes on standard hardware, making implementation feasible across diverse organizational 

contexts. Technical teams should prioritize establishing automated explanation generation for 

all production models, utilizing SHAP for global feature importance analysis and LIME for 

case-specific explanations to stakeholders. 

Model validation processes should incorporate explanation consistency as an evaluation metric 

alongside traditional performance measures. The high correlation observed between SHAP and 

LIME suggests that significant disagreement between methods may indicate model instability 

or data quality issues requiring investigation. Documentation standards should mandate 

inclusion of both global feature importance rankings and representative local explanations for 

critical predictions, ensuring model behavior remains auditable and comprehensible. 

Educational institutions teaching machine learning should adopt similar reproducible 

workflows to demonstrate explainability concepts. The complete pipeline from data 

preprocessing through explanation generation provides students with practical experience in 

implementing XAI techniques while reinforcing the importance of interpretability in 

responsible AI development. The accessibility of the implementation on CPU hardware ensures 

equitable access to these educational resources regardless of computational infrastructure. 

 

5.2.2 Methodological Improvements 

Future implementations should explore ensemble explanation approaches that combine 

multiple XAI methods to provide more robust interpretations. While this study demonstrated 

strong agreement between SHAP and LIME, systematic integration of their complementary 

strengths could yield more comprehensive explanations. Specifically, SHAP's global 

consistency could guide LIME's local sampling strategy, potentially improving approximation 

accuracy in complex feature spaces. 

The explanation pipeline should be extended to handle diverse data modalities beyond tabular 

structures. Adaptation of the workflow for text, image, and time series data would broaden its 

applicability while maintaining the core principles of accessibility and reproducibility. 

Particular attention should focus on maintaining computational efficiency as data complexity 

increases, possibly through selective explanation generation for representative samples rather 

than exhaustive analysis. 

Visualization techniques require enhancement to better communicate uncertainty in 

explanations. Current implementations present point estimates of feature importance without 

conveying confidence intervals or stability measures. Incorporating bootstrap-based 

confidence bands for SHAP values and displaying LIME's local fidelity scores would provide 

users with better calibrated trust in explanations. 

 

5.2.3 Future Research Directions 

Systematic investigation of explanation stability across different model architectures and 

hyperparameter configurations would strengthen understanding of XAI method reliability. 

Research should examine whether the high correlation observed between SHAP and LIME 

persists across gradient boosting machines, neural networks, and other model families, 

identifying conditions where explanation methods diverge and investigating underlying causes. 

Development of standardized benchmarks for evaluating explanation quality remains a critical 

need. While this study used correlation between methods as a validation metric, comprehensive 

evaluation frameworks should incorporate human subject studies, counterfactual analysis, and 

downstream decision impact assessment. Such benchmarks would enable principled 

comparison of emerging XAI techniques and guide selection for specific application contexts. 

Investigation of the relationship between model complexity, predictive performance, and 

explanation quality warrants deeper exploration. This study maintained interpretability through 
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architectural constraints, but systematic analysis of this trade-off across multiple datasets and 

domains would inform optimal model design strategies. Research should particularly focus on 

identifying minimal complexity thresholds required for capturing domain-specific patterns 

while preserving explainability. 

The development of interactive explanation systems that allow stakeholders to explore model 

behavior through guided interrogation represents a promising direction. Static explanations, 

while valuable, cannot address all potential questions about model decisions. Dynamic 

interfaces enabling users to modify input features and observe explanation changes would 

enhance understanding and build appropriate trust in automated decisions. 

Finally, research should address the scalability of XAI methods to large-scale production 

systems processing millions of predictions daily. While the demonstrated workflow handles 

moderate data volumes effectively, industrial applications require streaming explanation 

generation, efficient storage of explanation artifacts, and real-time anomaly detection based on 

explanation patterns. Solutions maintaining the accessibility demonstrated in this work while 

achieving enterprise scale would significantly advance practical XAI deployment. 
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